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a b s t r a c t 

Background and Objectives: In brain imaging genetics, multi-task sparse canonical correlation analysis 

(MTSCCA) is effective to study the bi-multivariate associations between genetic variations such as sin- 

gle nucleotide polymorphisms (SNPs) and multi-modal imaging quantitative traits (QTs). However, most 

existing MTSCCA methods are neither supervised nor capable of distinguishing the shared patterns of 

multi-modal imaging QTs from the specific patterns. 

Methods: A new diagnosis-guided MTSCCA (DDG-MTSCCA) with parameter decomposition and graph- 

guided pairwise group lasso penalty was proposed. Specifically, the multi-tasking modeling paradigm en- 

ables us to comprehensively identify risk genetic loci by jointly incorporating multi-modal imaging QTs. 

The regression sub-task was raised to guide the selection of diagnosis-related imaging QTs. To reveal the 

diverse genetic mechanisms, the parameter decomposition and different constraints were utilized to facil- 

itate the identification of modality-consistent and -specific genotypic variations. Besides, a network con- 

straint was added to find out meaningful brain networks. The proposed method was applied to synthetic 

data and two real neuroimaging data sets respectively from Alzheimer’s disease neuroimaging initiative 

(ADNI) and Parkinson’s progression marker initiative (PPMI) databases. 

Results: Compared with the competitive methods, the proposed method exhibited higher or comparable 

canonical correlation coefficients (CCCs) and better feature selection results. In particular, in the simula- 

tion study, DDG-MTSCCA showed the best anti-noise ability and achieved the highest average hit rate, 

about 25% higher than MTSCCA. On the real data of Alzheimer’s disease (AD) and Parkinson’s disease 

(PD), our method obtained the highest average testing CCCs, about 40% ∼ 50% higher than MTSCCA. Es- 

pecially, our method could select more comprehensive feature subsets, and the top five SNPs and imaging 

QTs were all disease-related. The ablation experimental results also demonstrated the significance of each 

component in the model, i.e., the diagnosis guidance, parameter decomposition, and network constraint. 

Conclusions: These results on simulated data, ADNI and PPMI cohorts suggested the effectiveness and 

generalizability of our method in identifying meaningful disease-related markers. DDG-MTSCCA could be 

a powerful tool in brain imaging genetics, worthy of in-depth study. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

As an emerging topic in the last decade, brain imaging genet- 

cs aims to uncover the associations between genetic factors and 

he structure or function of the brain, especially for neurologi- 

al diseases [1–3] . So far, different types of imaging quantitative 

raits (QTs, a.k.a. endophenotypes) have been used, and many pre- 

iously missed genetic alterations such as single nucleotide poly- 
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orphisms (SNPs) have been identified for brain diseases [4–7] . 

ince multi-modal imaging QTs can characterize an individual with 

ifferent representations, the joint utilization of multi-modal infor- 

ation may provide more leverage in discovering risk loci and ab- 

ormal QTs in disordered brains compared to single-modality data 

 6 , 8 ]. Thus, how to effectively explore the bi-multivariate associa- 

ions between multi-modal imaging QTs and SNPs has become a 

ritical issue to be solved, which can further promote the under- 

tanding of brain pathology. 

Previous studies have suggested that the bi-multivariate sparse 

anonical correlation analysis (SCCA) is a useful technique to iden- 

ify the SNP-QT associations [9–12] . However, the conventional 

https://doi.org/10.1016/j.cmpb.2023.107450
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
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CCA methods are generally applied via learning the bi-directional 

elationship between SNP data and only one modality of imag- 

ng QTs, i.e., two-view SCCA, restricting its power in multi-modal 

nformation exploration. Afterward the multi-view SCCA (mSCCA) 

ethods were developed, attempting to take the advantage of 

ulti-modal imaging data [13–16] . For example, Witten et al. pre- 

ented a proposal for multiple groups of canonical correlation anal- 

ses (CCAs) to extend the sparse CCA methodology to the case of 

ore than two data sets [13] . Hao et al. proposed the three-way 

CCA method of T-SCCA, a stack of three SCCAs, aiming to learn 

he intrinsic associations among genetic markers, QTs and clinical 

cores [15] . And Fang et al. designed the joint SCCA (JSCCA), which 

sed a generalized fused lasso penalty to jointly estimate multi- 

le associations among multi-class subjects, including shared and 

lass-specific patterns [14] . Whereas, these mSCCA methods are ac- 

ually simple extensions to conventional two-view SCCA, which are 

nsupervised and, most importantly, use the multi-modal imaging 

ata straightforwardly. More recently, the idea of multi-task learn- 

ng has been introduced to multi-modal imaging genetics analysis, 

.e., multi-task SCCA (MTSCCA) [6] . By constructing multiple SCCA 

ub-tasks, i.e., each modality corresponds to one task, MTSCCA 

ade use of complementary information carried by different imag- 

ng data, and could achieve improved association identification and 

eature selection results. On this basis, Wei et al. proposed a sparse 

ivariate learning model with a linear regression model [17] . Wang 

t al. proposed a multi-task sparse canonical correlation analysis 

egression model that integrated multi-modal biological clinical in- 

icators [18] . Chen et al. proposed a nonlinear multi-task SCCA, ap- 

lied to incomplete multi-modal imaging and genetic data [19] . 

However, it is still insufficient before the application of MTSCCA 

n real data. First, similar to mSCCA, MTSCCA is still unsuper- 

ised without using the diagnosis information. This may lead to 

isease-irrelevant SNP-QT associations, thereby misleading the in- 

erpretability of the method. For example, Wei and Wang et al ’s 

tudies proved the importance of diagnosis in feature selection 

 17 , 18 ]. Second, the disentanglement of the shared and specific in-

ormation is inadequate due to the lack of an uncoupling mecha- 

ism [20] . These two kinds of information are important for fur- 

her identification of meaningful features and tracing back to the 

omplex genetic mechanism of disease, as some brain regions may 

xhibit modality-consistent characteristics and other regions may 

wn modality-specific characteristics. Moreover, according to neu- 

oimaging findings, the brain is organized in the form of networks 

nstead of isolated regions [ 21 , 22 ]. This means that strong connec-

ions may exist between some QT pairs (one brain region may in- 

uence another brain region), while weak or no connections exist 

etween other pairs. Unfortunately, current MTSCCA methods ig- 

ore this which further limits their capability. 

Given the above considerations, we proposed an improved 

ulti-task SCCA method for multi-modal imaging genetic associ- 

tion analysis. First, the basic multi-task SCCA model was con- 

tructed to explore the associations between SNPs and multi- 

odal QTs. To achieve more precise disease-related SNP-QT as- 

ociations, one regression task corresponding to diagnosis status 

as raised to guide the selection of diagnosis-related imaging 

Ts. Moreover, the canonical weight associated with genetic data 

as decomposed into the task-consistent and task-specific parts, 

nd different penalties were imposed to pursue the modality- 

onsistent and -specific subsets of SNPs [20] . Notably, an orthog- 

nal constraint was employed to better disentangle the shared 

nd specific components. As for the brain network constraints, a 

raph-guided pairwise group lasso penalty (named GGL-penalty 

9] ) was employed for network identification. Finally, the proposed 

ethod was named DDG-MTSCCA as it jointly applies parame- 

er decomposition, diagnosis information, and GGL-penalty. An ef- 

cient optimization algorithm was provided to solve the overall 
2 
roblem. To evaluate the performance of DDG-MTSCCA, we respec- 

ively used simulated data, and two independent real neuroimag- 

ng genetic data sets from the Alzheimer’s disease neuroimag- 

ng initiative (ADNI) and Parkinson progression marker initiative 

PPMI) databases. Our experimental results showed that DDG- 

TSCCA performed better or comparably compared to benchmarks 

n canonical correlation coefficients (CCCs) and feature subsets se- 

ection of meaningful SNPs and imaging QTs. More importantly, 

DG-MTSCCA could identify modality-consistent SNPs as well as 

odality-specific SNPs showing relevance to disorders. All of the 

esults demonstrated the potential of DDG-MTSCCA in multi-modal 

rain imaging genetics research, as a promising tool to further help 

nderstand the mechanism of brain diseases. 

. Method 

Herein, we denote scalars as italic letters, column vectors as 

oldface lowercase letters, and matrices as boldface uppercase 

nes. For a given matrix M = ( m ij ), m 

i and m j indicate the i th

ow and j -th column of the matrix, respectively. ‖ m ‖ 2 denotes the

uclidean norm of the vector m , ‖ M ‖ F = 

√ ∑ 

i 

∑ 

j m 

2 
i j 

denotes the 

robenius norm, and ‖ M ‖ 1,1 = �i �j | m ij | denotes the � 1,1 -norm of

. Specifically, we use the matrix X ∈ R 

n ×p to represent the genetic 

ata with n subjects and p SNPs, and the matrix Y c ∈ R 

n ×q (c =
 , · · · , C) to represent the phenotype data with n subjects and q 

maging QTs for the c -th imaging modality, where C is the number 

f imaging modalities (tasks). 

.1. Overview of the DDG-MTSCCA workflow 

Fig. 1 presents the flowchart of DDG-MTSCCA, consisting of 

hree components. First, we preprocessed and organized the multi- 

odal brain imaging, SNP and diagnostic data, and then fed them 

o the model. Second, the DDG-MTSCCA model was designed to ex- 

lore the associations between SNPs and multi-modal imaging QTs, 

hich included three key parts. The canonical correlation analysis 

CCA) part with parameter decomposition was responsible for con- 

tructing the association between SNPs and QTs, while decoupling 

odality-consistent and -specific SNPs. The linear regression part 

as in charge of determining the diagnosis-related QTs. The sparse 

onstraints assisted to obtain meaningful sparse feature subsets, 

ncluding modality-consistent and -specific sparsity of decomposed 

arameters and GGL-penalty to select QT pairs with strong connec- 

ions. Finally, the proposed method was applied to two kinds of 

eurodegenerative diseases: Alzheimer’s disease (AD) and Parkin- 

on’s disease (PD). With the above processing steps, some specific 

iomarkers of AD and PD, including brain imaging QT and SNP fea- 

ures, can be obtained. 

.2. MTSCCA 

The MTSCCA model identifies the bi-multivariate association 

etween SNPs and multi-modal imaging QTs which is defined as 

ollows: 

in 

u c , v c 

∑ C 
c=1 ‖ Xu c − Y c v c ‖ 

2 
2 

.t. ‖ Xu c ‖ 

2 
2 = 1 , ‖ Y c v c ‖ 

2 
2 = 1 , �( U ) ≤ b 1 , �( V ) ≤ b 2 , ∀ c. 

(1) 

In this model, U ∈ R 

p×C denotes the canonical weight matrix 

ssociated with genetic data X and each u c corresponds to each 

ub-task Y c . V ∈ R 

q ×C denotes that associated with imaging QTs 

 j and each v c corresponds to each sub-task Y c . �( U ) and �( V ) are

enalty functions that control the sparsity and can prevent overfit- 

ing as well. 

As indicated above, though MTSCCA has shown good effective- 

ess in multi-modal brain imaging genetics, it is still insufficient. 
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Fig. 1. The flowchart of the proposed DDG-MTSCCA method. 
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irst, it is unsupervised which may achieve disease-irrelevant SNP- 

T associations. Second, its halfway disentanglement of the shared 

nd specific information may still lead to tangled results which is 

ard to interpret. Besides, it ignores the intrinsic network structure 

f the brain. Therefore, the present study improved this MTSCCA 

odel based on the above considerations. 

.3. The proposed DDG-MTSCCA model 

.3.1. Diagnosis-guided MTSCCA 

In order to make MTSCCA supervised, one regression compo- 

ent was added to Eq. (1) to make use of the diagnostic informa- 

ion. This diagnosis-guided MTSCCA model is defined as 

in 

u c , v c 

∑ C 
c=1 ‖ Xu c − Y c v c ‖ 

2 
2 + 

∑ C 
c=1 ‖ z − Y c v c ‖ 

2 
2 

.t. ‖ Xu c ‖ 

2 
2 = 1 , ‖ Y c v c ‖ 

2 
2 = 1 , �( U ) ≤ b 1 , �( V ) ≤ b 2 , ∀ c, 

(2) 

here z ∈ R 

n ×1 is a column vector corresponding to the diagnosis 

tatus of n subjects. 

This model consists of two parts: the regression part and the 

TSCCA part. Specifically, the regression part is responsible for 

dentifying diagnosis-related imaging QTs, and the MTSCCA part is 

sed to select relevant SNPs being related to imaging QTs obtained 

y the regression. Thus, the ultimately selected features are more 

easonable than those unsupervised methods. 

.3.2. DDG-MTSCCA 

The multi-modal imaging data usually characterizes an individ- 

al with different representations, and thus they could somehow 

hare information as well as carry specific information associated 

ith each modality. Both types of information could be useful for 

nderstanding the pathology of brain diseases. Moreover, this kind 

f heterogeneous but coupled information may play a crucial role 

n identifying risk loci. Thus, a diverse sparsity at both the individ- 

al level and group level is preferred for feature selection. Parame- 

er decomposition is a good way to achieve this, i.e., decomposing 

he canonical weight of SNP into task-consistent and task-specific 

nes to identify the corresponding two kinds of features. Whereas, 

he tangle problem could still exist [23] . To overcome this issue, 

e further use an additional orthogonal constraint, which can well 
3

isentangle the shared and specific information. In addition, ac- 

ording to current neuroimaging studies, the brain operates in the 

orm of a network. In other words, the brain regions prefer to work 

ointly rather than individually and separately. Then, it is mean- 

ngful to consider the network constraint in the model. To identify 

eaningful brain sub-networks, the graph-guided GGL-penalty was 

urther added in our model for the brain imaging data [15] . 

Formally, the proposed DDG-MTSCCA model is given by: 

min 

 , W , v c 

∑ C 
c=1 ‖ X ( s c + w c ) − Y c v c ‖ 

2 
2 + 

∑ C 
c=1 ‖ z − Y c v c ‖ 

2 
2 

+ βs ‖ S ‖ 2 , 1 + λw 

‖ W ‖ 1 , 1 + γ
∑ C 

c=1 s 
� 
c w c 

+ λv 1 
∑ C 

c=1 ‖ v c ‖ 1 + λv 2 
∑ C 

c=1 �GGL ( v c ) 
.t. ‖ X ( s c + w c ) ‖ 

2 
2 = 1 , ‖ Y c v c ‖ 

2 
2 = 1 , ∀ c, 

(3) 

here βs , λw 

, γ , λv 1 , λv 2 are regularization parameters to help 

dentify those relevant features. Compared with Eq. (2) , the DDG- 

TSCCA decomposes the canonical weight U associated with ge- 

etic data into the task-consistent component S ∈ R 

p×C and the 

ask-specific component W ∈ R 

p×C with s c and w c corresponding 

o each sub-task Y c , namely U = S + W . 

After parameter decomposition, distinct penalties are imposed 

n S and W respectively. Specifically, considering an individual SNP 

ould be relevant to all modalities, the � 2,1 -norm is imposed onto 

he shared component S , i.e. 

 S ‖ 2 , 1 = 

p ∑ 

i =1 

‖ s i ‖ 2 = 

p ∑ 

i =1 

√ 

C ∑ 

c=1 

( s ic ) 
2 (4) 

o pursuit the task-consistent selection for SNPs. Meanwhile, some 

NPs could be associated with only one specific task (modality). 

ccordingly, � 1,1 -norm is imposed onto the task-specific component 

 . 

Besides, we impose an orthogonal constraint on S and W 

 SW = I ) to guarantee the independence between S and W , and

o better decouple the task-consistent and -specific information si- 

ultaneously. 

The GGL-penalty is used in our algorithm to embody the net- 

ork connection information. It mainly takes advantage of both 

roup lasso and graph-guided fused lasso, which is robust to the 

orrelation directionality and requires no prior knowledge. The 
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Algorithm 1 

Algorithm to solve Eq. (3) . 

Require: 

X ∈ R 

n ×p 
, Y c ∈ R 

n ×q c , E c ∈ R 

q c ×q c , βs , λw , λv 1 , λv 2 , γ , c ∈ [1 , C] 

Ensure: 

Canonical weights S , W , v c 
1: Initialize S ∈ R 

p×C 
, W ∈ R 

p×C and v c ∈ R 

q c ×C 

2: while not convergence do 

3: Update ˜ D and solve ̂  s c according to Eq. (8) 

4: Update 
	 

D c and solve ˆ w c according to Eq. (9) 

5: Solve S and W according to Eq. (10) 

6: Update D c and ̃  D c 

7: Solve v c according to Eq. (11) , and normalize v c to ‖ Y c v c ‖ 2 2 = 1 

according to Eq. (12) 

8: end while 

3
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GL-penalty is defined as 

GGL ( v c ) = 

∑ 

( i, j ) ∈ E c 

√ 

v 2 
ci 

+ v 2 
cj 
, (5) 

here E c is the edge set of the graph (network) of the c -th modal-

ty (task). Meanwhile, the � 1 -norm penalty is imposed on v c in or- 

er to obtain individual level sparsity. 

.4. The optimization algorithm 

As S , W , and v c are jointly non-convex, it is difficult to solve

q. (3) straightly. Fortunately, it is a bi-convex problem. Thus, we 

se the alternative convex search (ACS) strategy to solve Eq. (3) . 

he detailed steps are described as follows. 

.4.1. Updating S and W 

Firstly, we update s c with W , v c ( c = 1, ���C ) and s k ( k 	 = c ) fixed.

onsidering W , v c and s k as constants, we can rewrite the objective 

ith respect to s c as 

in 

S 

C ∑ 

c=1 

‖ Xs c − Y c v c ‖ 

2 
2 + βs ‖ S ‖ 2 , 1 + γ

C ∑ 

c=1 

s � c w c (6) 

Then we derive the Eq. (6) with respect to s c and set it to zero,

 X 

� Xs c − 2 X 

� Y c v c + 2 βs ̃
 D s c + γ w c = 0 , (7) 

here ˜ D is a diagonal matrix with i th diagonal element being 
1 

2 ‖ s i ‖ (i = 1 , · · · , p) . Lastly, ˆ s c can be obtained as follows 

 

 c = 

(
X 

� X + βs ̃
 D 

)−1 
(

X 

� Y c v c − 1 

2 

γ w c 

)
. (8) 

Similarly, with S , v c ( c = 1, ���C ) and w k ( k 	 = c ) fixed, we easily

ave 

ˆ 
 c = 

(
X 

� X + λw 

� 

D c 

)−1 (
X 

� Y c v c − 1 

2 

γ s c 

)
(9) 

y taking the derivative of Eq. (3) with respect to each w c sepa- 

ately, and letting them be zero. 
	 

D c here is a diagonal matrix, and 

ts i th element being 1 
2 | w ic | ( i = 1 , · · · , p ) . 

In order to satisfy the equality constraints of Eq. (3) [23] , we 

cale ˆ s c and 

ˆ w c as follows. 

 c = 

ˆ s c 

‖ X 

(
ˆ s c + 

ˆ w c 

)‖ 

, w c = 

ˆ w c 

‖ X 

(
ˆ s c + 

ˆ w c 

)‖ 

(10) 

.4.2. Updating V c 

The v c ( c = 1, ���C ) should be solved separately since each v c 
s associated with each Y c respectively. Following the same proce- 

ures of solving ˆ s c and 

ˆ w c , we have 

ˆ 
 c = 

(
λv 1 D c + 

1 

2 

λv 2 ̃
 D c + 2 Y 

� 
c Y c 

)−1 

Y 

� 
c ( Xu c + z ) , (11) 

here 2 D c v c is the subgradient of the � 1 -norm penalty ofv c and
 

 c v c is that of GGL-penalty. Specifically, D c is a diago- 

al matrix with its i th element being 1 
2 | v ic | ( i = 1 , · · · , p ) ; 

 

 c is also a diagonal matrix with the k -th entry being 
 

j, j 	 = k 
1 √ 

v 2 
kc 

+ v 2 
jc 

( k ∈ [ 1 , q c ] , c ∈ [ 1 , C ] ) . To satisfy the equality con- 

traints in Eq. (3) , we scale ˆ v c by 

 c = 

ˆ v c 

‖ Y ̂

 v c ‖ 

. (12) 

According to the ACS method, our model is optimized by up- 

ating S , W , and v c alternatively. Algorithm 1 summarizes the opti- 

ization pseudocode of DDG-MTSCCA. These variables are updated 

n turn in each iteration until the algorithm converges or reaches a 

redefined stopping condition. 
4

. Experiments and results 

.1. Experimental setup 

We compared the proposed DDG-MTSCCA method to the three 

ost related methods including the conventional two-view SCCA 

11] , multi-view SCCA (mSCCA) [13] , and MTSCCA to evaluate their 

erformance in this study. For DDG-MTSCCA, it employs a multi- 

ask learning paradigm, and generates canonical weight matrices S 

nd W for SNP data and one canonical weight vector v c for each 

pecific modality of imaging QTs respectively. However, the two- 

iew SCCA is a single-task model. When processing multi-model 

maging data, the SCCA splits it into multiple single-task two-view 

CCA models and calculates a canonical weight vector u c and v c 
or each task independently. Since mSCCA only learns one canon- 

cal weight vector u for SNP data, we stack the weight u several 

imes to yield canonical weight matrix U . Similarly, MTSCCA learns 

ultiple SCCA tasks together, yielding canonical weight U for SNPs 

nd canonical weight vector v c for the c -th modality of imaging 

Ts. 

Using a proportion of 6:2:2, we divide the data set into three 

arts, namely training set, validation set and testing set. The pa- 

ameters in the model are tuned based on the training and vali- 

ation set. Particularly, the set of parameters with the highest cor- 

elation coefficient is retained as the optimal parameter combina- 

ion. Using the optimal parameters, the model is retrained on the 

ombined training and validation set, and the final results are cal- 

ulated on the testing set. Five parameters, i.e., βs , λw 

, λv 1 , λv 2 , γ , 

re tuned for the DDG-MTSCCA model. Specifically, the first three 

arameters govern the sparsity level of the feature subsets, the 

ourth parameter controls the selected brain networks, and the 

ast parameter restrains the independence of the shared and 

pecific information. We apply the grid search strategy to tune 

hose parameters from a moderate range 10 i ( i = −5, −4, …, 0, 

, 4, 5). To ensure efficiency, we set two stopping conditions, 

.e.,max c |( s c + w c ) 
t + 1 − ( s c + w c ) 

t | ≤ ε and max c | v t+1 
c − v t c | ≤ ε,

here t is the number of iterations, the estimation tolerance error 

= 10 −5 and the maximum number of iterations was set to 100. 

oth stopping conditions could obtain good results experimentally. 

e repeat each experiment using the same experimental setup 

00 times to ensure stable results. Finally, we show the average 

esults by removing those results of failure trials (about 20 out of 

00), since those failure ones are probably due to the inappropriate 

ata partition. 

.2. Results on synthetic data 

.2.1. Data sources 

In this section, we performed four experiments on the synthetic 

ata. We generated four data sets with different numbers of sam- 

les, features, and noise levels. The first three data sets shared the 
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Table 1 

Training and Testing CCCs (mean ± std) Estimated from Synthetic Data Sets. 

Data set Method 

Training CCCs Testing CCCs 

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3 

Data 1 SCCA 0.94 ±0.01 0.90 ±0.02 0.93 ±0.01 0.35 ±0.09 0.41 ±0.20 0.59 ±0.19 

mSCCA 0.98 ±0.00 0.98 ±0.00 0.98 ±0.00 0.30 ±0.14 0.53 ±0.20 0.36 ±0.18 

MTSCCA 0.97 ±0.00 0.96 ±0.00 0.98 ±0.01 0.24 ±0.20 0.43 ±0.20 0.53 ±0.27 

DDG-MTSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.38 ±0.15 0.49 ±0.15 0.54 ±0.20 

Data 2 SCCA 0.88 ±0.01 0.89 ±0.01 0.91 ±0.01 0.50 ±0.17 0.74 ±0.10 0.77 ±0.08 

mSCCA 0.96 ±0.00 0.96 ±0.01 0.96 ±0.01 0.46 ±0.18 0.60 ±0.14 0.62 ±0.14 

MTSCCA 0.97 ±0.00 0.98 ±0.00 0.98 ±0.00 0.45 ±0.18 0.65 ±0.11 0.74 ±0.09 

DDG-MTSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.66 ±0.12 0.74 ±0.09 0.78 ±0.08 

Data 3 SCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 

mSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.96 ±0.01 0.97 ±0.01 0.98 ±0.01 

MTSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.96 ±0.02 0.98 ±0.01 0.98 ±0.01 

DDG-MTSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.01 0.99 ±0.00 0.99 ±0.00 

Data 4 SCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.01 0.99 ±0.00 0.99 ±0.00 

mSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.97 ±0.00 0.98 ±0.00 0.98 ±0.00 

MTSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.98 ±0.00 0.98 ±0.00 0.98 ±0.00 

DDG-MTSCCA 0.99 ±0.00 0.99 ±0.00 0.99 ±0.00 0.99 ±0.01 0.99 ±0.00 0.99 ±0.00 
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D  
ame ground truth but with different noise strengths, which could 

emonstrate the performance of one method under different noise 

ntensities. The fourth data set was generated to access the perfor- 

ance under a high-dimensional situation. The details of each data 

et synthesis are described as follows. 

Data 1: We set the number of subjects n to 60, the 

round truth of SNP data to u = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
50 

1 , · · · , 1 , ︸ ︷︷ ︸ 
40 

0 , · · · , 0 ︸ ︷︷ ︸ 
60 

) � , 

nd the ground truth of three imaging modal- 

ties (tasks) to v 1 = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
45 

1 , · · · , 1 , ︸ ︷︷ ︸ 
30 

0 , · · · , 0 ︸ ︷︷ ︸ 
45 

) � , 

 2 = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
20 

2 , · · · , 2 , ︸ ︷︷ ︸ 
20 

0 , · · · , 0 ︸ ︷︷ ︸ 
20 

1 , · · · , 1 , ︸ ︷︷ ︸ 
20 

0 , · · · , 0 ︸ ︷︷ ︸ 
20 

) � , 

 3 = ( 1 , · · · , 1 , ︸ ︷︷ ︸ 
20 

0 , · · · , 0 , ︸ ︷︷ ︸ 
30 

2 , · · · , 2 , ︸ ︷︷ ︸ 
40 

0 , · · · , 0 ︸ ︷︷ ︸ 
30 

) � respectively. Accord- 

ng to the population classification information, a latent vector 

 ∈ R 

n ×1 of length n with unit norm was generated. Then the 

ata matrix X was generated by x l,i ∼ N ( z l u i , σ x ), and each Y c by

 y l, j ) c ∼ N( z l v j , σy c ) , where σ = σx = σy 1 = σy 2 = σy 3 = 5 denotes 

he noise strength. 

Data 2 ∼ Data 3: These two data sets were produced by uti- 

izing the same settings as Data 1, but with different noise lev- 

ls, that was σ = σx = σy 1 = σy 2 = σy 3 = 2 for Data 2 and σ = σx =
y 1 = σy 2 = σy 3 = 0 . 1 for Data 3. Accordingly, the true correlation 

oefficients of these three data sets increased gradually. 

Data 4: n = 500 , σ = σx = σy 1 = σy 2 = σy 3 = 

 . 1 , u = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
400 

1 , · · · , 1 , ︸ ︷︷ ︸ 
200 

0 , · · · , 0 , ︸ ︷︷ ︸ 
300 

2 , · · · , 2 , ︸ ︷︷ ︸ 
100 

0 , · · · , 0 ︸ ︷︷ ︸ 
10 0 0 

) � , 

 1 = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
300 

1 . 5 , · · · , 1 . 5 , ︸ ︷︷ ︸ 
100 

0 , · · · , 0 ︸ ︷︷ ︸ 
200 

) � , 

 2 = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
250 

1 . 5 , · · · , 1 . 5 , ︸ ︷︷ ︸ 
150 

0 , · · · , 0 ︸ ︷︷ ︸ 
150 

) � , 

 3 = ( 0 , · · · , 0 , ︸ ︷︷ ︸ 
250 

1 . 5 , · · · , 1 . 5 , ︸ ︷︷ ︸ 
150 

0 , · · · , 0 ︸ ︷︷ ︸ 
150 

) � . Similarly, the data ma- 

rix X was generated by x l,i ∼ N ( z l u i , σ x )and Y c was generated by

 y l, j ) c ∼ N( z l v j , σy c ) , with the latent vector z of length n . 

.2.2. Experiment results on synthetic data 

We ran all methods on four synthetic data, and showed the 

ean and standard deviations (STDs) of training and testing canon- 

cal correlation coefficients (CCCs) for each task (modality) in 
5 
able 1 . The CCC is widely used to evaluate the performance of 

CA methods. 

For Data 1, all methods exhibited significantly lower testing 

CCs than their training CCCs, suggesting overfitting due to the 

igh percentage of noise exerted in this data set. From the first 

ata set to the third one, the testing CCCs of these three data 

ets increased gradually due to the decrease of noise strength, and 

he testing CCCs reached the same level as training CCCs in Data 

. The DDG-MTSCCA obtained the highest testing CCCs in Task 1 

0.38 ± 0.15) and Task 2 (0.49 ± 0.15) while SCCA achieved the 

ighest testing CCCs in Task 3 for Data 1. DDG-MTSCCA both ob- 

ained the highest training and testing CCCs among all four meth- 

ds in Data 2 and Data 3. These results suggest that our method 

as a greater advantage than the benchmarks under the low Sig- 

al to Noise Ratio (SNR) situation, owing to the modeling paradigm 

nd utilization of diagnosis information. In the high-dimensional 

ata set of Data 4, DDG-MTSCCA also obtained higher testing CCCs 

han mSCCA and MTSCCA for each task, comparable with SCCA. 

For brain imaging genetics studies, selecting correct feature 

ubsets is of great interest and importance. The heat maps in Fig. 2 

howed the feature selection results of each method on the four 

ynthetic data sets, and the ground truths were also presented in 

he first row for reference in each subfigure. From Fig. 2 , it can be

bserved that the identified genetic and imaging features improve 

rom Data 1 to Data 3 for all the methods, when considering their 

onsistence with the ground truths. Compared with mSCCA and 

TSCCA, DDG-MTSCCA holds better canonical profiles being con- 

istent with the ground truths. Especially in Data 2 and Data 3, the 

anonical weight U of our method selects more comprehensive fea- 

ure subsets than mSCCA and MTSCCA, indicating the advantages 

f parameter decomposition and multi-task modeling. Besides, in 

ata 3, the canonical weight V of DDG-MTSCCA could select the 

eak signal (in Task 2 and Task 3), while MTSCCA cannot, sug- 

esting introducing diagnosis information could assist label-related 

eature selection. In the high-dimensional data set (Data 4), DDG- 

TSCCA could also identify correct signal positions. 

Moreover, in order to evaluate feature subsets intuitively, we 

alculated the hit rates of each canonical weight as shown in Fig. 3 .

pecifically, the hit rate is the proportion of real features in the 

rst k features with larger weights, where k is the number of non- 

ero features of the ground truth. The higher hit rate means better 

dentification performance. DDG-MTSCCA achieved the highest hit 

ates of canonical weights u , v 1 , v 3 on all four data sets and v 2 on

ata 3 and Data 4, expect less hit rates than SCCA for Task 2 on
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Fig. 2. Comparison of canonical weights in terms of each task for synthetic data sets. For each data set, the canonical weight U is shown on the left, and V is shown on 

the right. The top row shows the ground truth of U and V , and the remaining rows correspond to the methods: (1) SCCA; (2) mSCCA; (3) MTSCCA; (4) DDG-MTSCCA. Our 

method has two weights for X owing to the parameter decomposition, i.e., S and W . Within each panel, there are three rows corresponding to three SCCA tasks (denoted as 

T1 ∼T3). 
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ata 1 and Data 2. Moreover, the average hit rate of DDG-MTSCCA 

or the four data sets was the highest, about 25% higher than that 

f MTSCCA. The above results further highlight the anti-noise abil- 

ty and recognition sensitivity of our method. 

In summary, using data sets with different noise levels and dif- 

erent characteristics, this simulation study suggested the effective- 

ess of DDG-MTSCCA in the bi-multivariate association identifi- 

ation of multi-modality data. The parameter decomposition and 

iagnosis-guided strategy helped the identification of more com- 

rehensive features, and what’s more, our method could achieve 

ask-consistent and -specific features while the other three meth- 

ds could not. 

.3. Results on real neuroimaging genetic data 

To further validate the effectiveness and reliability of our 

ethod, we performed and compared all four methods on real 

euroimaging genetic data sets. Two independent real data sets 

ere used, i.e., ADNI and PPMI, with the aim to discover poten- 

ial brain regions and genetic variations associated with AD or PD. 

.3.1. Results on ADNI research database 

1) Data Sources 

We first used genotyping and multi-modal brain imaging data 

rom the ADNI database (adni.loni.ucla.edu). This project aims to 

ombine neuroimaging, clinical and neuropsychological assessment 

nd other biological markers to investigate the progression of mild 

ognitive impairment (MCI) and early AD. The up-to-date informa- 

ion can be checked out at www.adni-info.org. 

A total of 755 non-Hispanic Caucasian subjects participated in 

his experiment, including 182 healthy control (HC) subjects, 75 

ignificant memory concern (SMC) subjects, 217 early mild cogni- 

ive impairment (EMCI) subjects, 184 late mild cognitive impair- 

ent (LMCI) subjects and 97 CE subjects. The explicit characteris- 

ics of the participants are listed in Table 2 . We collected the neu-

oimaging data of three modalities of each subject, including 18F 

orbetapir positron-emission tomography (AV45 PET) scans, flu- 

rodeoxyglucose positron-emission tomography (FDG PET) scans, 
6 
nd structural magnetic resonance imaging (sMRI) scans, and 

ligned the multi-modal imaging data to each other. For sMRI 

ata, Statistical Parametric Mapping (SPM) software was used to 

erform voxel-based morphometry (VBM) processing on it. Spe- 

ially, all the sMRI images were firstly registered to a T1-weighted 

emplate image, and then segmented into three parts: the gray 

atter (GM), the white matter (WM), and the cerebrospinal fluid 

CSF) maps. These maps were normalized to the standard space 

f Montreal Neurological Institute (MNI) with the voxel size of 

 × 2 × 2 mm 

3 , and smoothed with an 8 mm full-width-half- 

aximum (FWHM) kernel. For PET images, we co-registered the 

V45 PET and FDG PET scans to the same MNI space. Lastly, based 

n the MarsBaR automated anatomical labeling (AAL) atlas, the 

MRI and PET images were segmented into 116 regions of inter- 

st (ROIs). At the ROI level, we extracted the mean GM densities 

f sMRI scans, beta-amyloid depositions of AV45 PET scans, and 

lucose utilization of FDG PET scans for each ROI as three kinds 

f imaging QTs (represented as VBM, AV45 and FDG respectively). 

hen, for each imaging modality, a total of 116 QTs were acquired, 

epresenting 116 AAL brain regions. 

In addition, we downloaded the genotyping data corresponding 

o each subject from the ADNI website. They were genotyped using 

he Human 610-Quad or Omni Express Array (Illumina, Inc., San 

iego, CA, USA), and preprocessed by the standard quality control 

QC) and imputation steps. According to the ANNOVAR annotation, 

e collected 40 0 0 SNPs from neighbors of the AD risk gene APOE 

n chromosome 19 for experiment [ 24 , 25 ]. 

2) Experimental Results on ADNI 

In this subsection, we applied the above four algorithms to the 

DNI data to investigate the bi-multivariate associations between 

enetic data and three sets of imaging QTs. For simplicity, there 

ere three tasks respectively denoted as SNP-AV45, SNP-FDG and 

NP-VBM. Table 3 exhibited the training and testing CCCs for each 

ask, and the averaged results for each method. 

As shown in Table 3 , the performance of DDG-MTSCCA sur- 

assed that of all the other three methods across multiple tasks 

xcept the training results of SNP-VBM. The two-view SCCA ob- 

ained the highest training CCCs (0.30 ± 0.04) in the SNP-VBM 
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Fig. 3. Comparison of the hit rates of each canonical weight ( u , v 1 , v 2 , v 3 ) obtained from average results on synthetic data. 

Table 2 

ADNI participant characteristics. 

HC SMC EMCI LMCI AD 

Num 182 75 217 184 97 

Gender (M/F) 89/93 29/46 113/104 96/88 54/43 

Handedness (R/L) 163/19 65/10 194/23 165/19 89/8 

Age (mean ±std) 73.93 ±5.51 71.77 ±5.76 70.59 ±7.16 71.89 ±7.92 73.99 ±8.44 

Education (mean ±std) 16.43 ±2.68 16.87 ±2.71 15.94 ±2.64 16.14 ±2.92 15.60 ±2.61 

Table 3 

CCCs (mean ± std) estimated between SNPs and imaging QTs of three modalities from 

ADNI data set. 

SNP-AV45 SNP-FDG SNP-VBM Average 

Training SCCA 0.42 ±0.01 0.29 ±0.01 0.30 ±0.04 0.34 ±0.02 

mSCCA 0.33 ±0.06 0.29 ±0.03 0.26 ±0.01 0.29 ±0.03 

MTSCCA 0.41 ±0.04 0.23 ±0.03 0.25 ±0.03 0.30 ±0.03 

DDG-MTSCCA 0.45 ±0.01 0.31 ±0.01 0.21 ±0.02 0.32 ±0.01 

Testing SCCA 0.42 ±0.06 0.29 ±0.06 0.09 ±0.06 0.27 ±0.06 

mSCCA 0.21 ±0.11 0.18 ±0.08 0.13 ±0.09 0.17 ±0.09 

MTSCCA 0.39 ±0.07 0.19 ±0.08 0.09 ±0.08 0.22 ±0.08 

DDG-MTSCCA 0.47 ±0.06 0.33 ±0.06 0.20 ±0.07 0.33 ±0.06 

7
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Fig. 4. The visualization of canonical weights of SNPs in terms of each task (i.e. 

AV45, FDG, VBM) for each method. From top to bottom: SCCA ( U ), mSCCA ( U ), 

MTSCCA ( U ), DDG-MTSCCA ( S ) and DDG-MTSCCA ( W ). 

Table 4 

Top five imaging modality-specific SNPs selected by canonical weights of each imag- 

ing modality of DDG-MTSCCA except modality-consistent SNPs. 

AV45 FDG VBM 

rs10414043 rs7256200 rs483082 

rs7256200 rs10414043 rs3786497 

rs769449 rs438811 rs438811 

rs73052335 rs111789331 rs1727743 

rs438811 rs73052335 rs5117 
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Fig. 5. The visualization of identified imaging QTs in each imaging modality (i.e. 

AV45, FDG and VBM) for each method. From top to bottom: SCCA, mSCCA, MTSCCA 

and the proposed DDG-MTSCCA. 
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ask, however, the corresponding testing CCCs (0.09 ± 0.06) was 

xtremely low, suggesting that SCCA might fall into overfitting 

nd further implying its limited performance in real neural data 

ets. Comparatively, the DDG-MTSCCA exhibited balanced training 

nd testing CCCs for SNP-VBM, despite the relatively low values. 

hough mSCCA could simultaneously utilize three kinds of imag- 

ng QTs, its performance is degraded with lower CCCs than SCCA 

xcept the testing result of SNP-VBM task. This phenomenon could 

e attributed to its over-strict modeling strategy. That is, mSCCA 

equires the set of genetic data to be associated with three sets of 

maging QTs at the same time [6] . As to MTSCCA, it achieved simi-

ar training and testing results on SNP-AV45 and SNP-VBM to two- 

iew SCCA, while the training and testing CCCs of the SNP-FDG 

ask were relatively small. In addition, DDG-MTSCCA achieved the 

ighest average testing CCCs, about 50% higher than MTSCCA. To 

um up, compared to the other three comparison methods, DDG- 

TSCCA is outstanding across all three tasks. 

Apart from the CCCs, identifying risk loci and imaging markers 

or AD will assist scientists or clinicians in exploring and devel- 

ping more targeted treatment plans, which is a primary concern 

or imaging genetics. The heat maps in Fig. 4 show SNPs identified 

ased on the amplitude of canonical weights for each method. 

Obviously, compared to benchmarks, DDG-MTSCCA achieved 

uch cleaner weight patterns, indicating its ability in identifying 

ignificant SNPs from massive markers. As expected, the notable 

D risk marker rs429358 ( APOE ) could be identified by mSCCA, 

TSCCA and our method, suggesting its essential correlation with 

D. The SCCA performed unacceptable in this comparison as it 

id not find out this SNP. Due to the defects of the modeling 

trategies, only partial AD-related modality-consistent SNPs were 

elected by mSCCA and MTSCCA. Comparatively, benefitting from 

he parameter decomposition strategy, the DDG-MTSCCA method 

btained both modality-consistent and -specific SNPs, and identi- 

ed the most comprehensive AD-related markers. Specifically, the 

odality-consistent SNPs included rs10119 ( TOMM40 ), rs769449 

 APOE ), rs12721051 ( APOC1 ), rs56131196 ( APOC1 ) and rs4420638 

 APOC1 ). Table 4 lists the top five modality-specific SNPs of each 

maging modality of our method. These selected SNPs were asso- 

iated with the corresponding imaging modalities, e.g., rs483082 

 APOC1 ) is highly correlated with VBM, enhancing the role of sMRI 

n identifying the loci of relevance. Importantly, the above identi- 
8

ed modality-consistent and -specific SNPs have been reported to 

e AD-related previously [26–28] . 

What’s more, the selected imaging QTs for the three modali- 

ies (AV45, FDG and VBM) of each method are also exhibited in 

ig. 5 . To make it clear, the distributions of the top five selected 

Ts of each modality selected by DDG-MTSCCA in the brain are 

hown in Fig. 6 . The AV45 mode selected five imaging QTs lo- 

ated in the frontal lobe, indicating the amyloid deposition of the 

rontal lobe could well reflect the state of disease, which is con- 

istent with the imaging studies [29] . The FDG identified the left 

ost cingulum cortex, which is a sign of MCI [30] . And the sig-

ificant reduction of glucose metabolism in the angular gyrus has 

een found to be associated with cognitive dysfunction [31] . Mean- 

hile, based on VBM, we identified atrophy of the bilateral hip- 

ocampus and also adjacent amygdala, which has been reported 

o be significant markers of AD and MCI [32] . The SCCA performed 

oorly since it did not find out the distinct mark related to AD such 

s the hippocampus. The mSCCA only identified a few AD-related 

Ts such as the bilateral hippocampus, but not nearly enough. 

he MTSCCA performed better than SCCA and mSCCA, which could 

dentify the biomarkers we reported, but the results were disor- 

anized and lacked a clear pattern of feature selection. The above 

esults demonstrated that our method could effectively and clearly 

dentify meaningful imaging QTs with the aid of parameter decom- 

osition, network constraint and diagnosis-guided regression. 

.3.2. Results on PPMI research database 

1) Data Sources 

We use neuroimaging data and SNP genotyping data of subjects 

rom the PPMI database (data downloaded via the PPMI website, 

ww.ppmi-info.org) for further validation, which focuses on the 

fforts in identifying new potential biomarkers for PD progression 

nd onset. Moreover, PPMI aims to enhance the development of 

ew therapies and treatments for PD through longitudinal studies 

onsidering different types of data. 

Neuroimaging Data : Throughout this study, we selected diffu- 

ion tensor imaging (DTI) and sMRI data since they have been 

hown to be proficient potential biomarkers for PD onset and 

rogression [ 33 , 34 ]. Subjects were excluded if their neuroimaging 

ata, subject information or genotyping data were missing. Finally, 

00 non-Hispanic Caucasian participants were included in the ex- 

eriment, including 35 HC and 65 PD participants. And the details 

f the participants characteristics are shown in Table 5 . 

The DTI and sMRI scans were processed by FMRIB’s Software 

ibrary (FSL) software (http://www.fmrib.ox.ac.uk/fsl). For DTI data, 

e first corrected for motion artifacts and eddy current distortions 

y normalizing each volume to non-diffusion-weight volume (b0) 

tilizing FMRIB’s Linear Image Registration Tool (FLIRT). Besides, by 

sing the brain-extraction tool (BET), the brain masks of the b0 im- 

ge were generated. Finally, we calculated the diffusion tensor with 

he FSL DTIFIT program for the whole brain and derived fractional 



X. Zhang, Y. Hao, J. Zhang et al. Computer Methods and Programs in Biomedicine 232 (2023) 107450 

Fig. 6. Top five important brain regions (listed in descending order of the canonical weight on the right side of the picture) and overall distribution from the AV45-PET (first 

row), FDG-PET (second row), and sMRI imaging data of AD (last row). 

Table 5 

PPMI participant characteristics. 

HC PD 

Num 35 65 

Gender (M/F) 27/8 43/22 

Age (mean ±std) 62.10 ±10.16 60.83 ±10.00 

Education (mean ±std) 16.80 ±2.45 16.68 ±1.56 
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Fig. 7. The visualization of canonical weights of SNPs in terms of each task (i.e. FA, 

MD, VBM) for each method. From top to bottom: SCCA ( U ), mSCCA ( U ), MTSCCA 

( U ), DDG-MTSCCA ( S ) and DDG-MTSCCA ( W ). 
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nisotropy (FA) and mean diffusivity (MD) parameter maps, then 

onlinearly registered each subject’s parameter images to the FM- 

IB58_FA template in MNI space by using Advanced Normalization 

ools (ANTs). Furthermore, we extracted the ROI-level DTI metrics 

ased on 48 ROIs of JHU-ICBM-labels. Similarly, the sMRI scans 

ere processed with VBM by FSL. After brain extraction and seg- 

entation, all the native GM images were non-linearly registered 

nto MNI space and smoothed using an FWHM of 6 mm. Based on 

he AAL atlas, the mean GM densities of 116 ROIs were also de- 

ived. Then, we obtained 116 VBM QTs, 48 FA QTs and 48 MD QTs 

or imaging data. 

Genotyping Data: The genotyping data of the same population 

ownloaded from the PPMI website were preprocessed using the 

tandard quality control (QC), which includes the call rate check 

er subject and per SNP marker, gender check, the Hardy-Weinberg 

quilibrium test, and marker removal by the minor allele fre- 

uency. According to ANNOVAR annotation, 20 0 0 SNPs collected 

rom neighbors of the PD risk gene TMEM175 were used in this 

aper [ 35 , 36 ]. 

2) Experimental Results on PPMI 

The bi-multivariate association analysis between one set of SNP 

ata and three sets of imaging QTs, i.e., SNP-FA, SNP-MD, and SNP- 

BM, was performed using the four methods. Similarly, Table 6 

hows the training and testing CCC results of each method. It can 

e observed that SCCA obtained the highest CCCs on the training 

et, but extremely low CCCs on the testing set for all tasks, indi- 

ating the existing overfitting problem. By comparison, the other 

ethods exhibited relatively low but more comparable training 

nd testing CCCs. mSCCA achieved the lowest CCCs in both train- 

ng and testing sets of each task due to its suboptimal modeling 

trategy. For MTSCCA, it obtained a bit higher training CCCs than 

DG-MTSCCA for each task. However, the latter yielded better test- 

ng results, the average of which is about 40% higher than that 

f MTSCCA. Besides, DDG-MTSCCA achieved the best testing CCCs 
9

hich were much close to the corresponding training CCCs, sug- 

esting its relatively good performance. As a result, DDG-MTSCCA 

utperformed other benchmark methods on the PPMI data set 

hen evaluating the performance of CCC. 

The identified SNPs and imaging QTs were also investigated 

y the absolute values of canonical weights. The feature se- 

ection results of SNPs are shown in Fig. 7 . In order to ver-

fy whether the identified SNPs are effective, SNPs with non- 

ero canonical weight were compared to the PD-related SNPs in 

he PDGene database [ 36 , 37 ]. Both the DDG-MTSCCA’s modality- 

onsistent component and the benchmark methods identified 

s901457, which is an intergenic locus associated with PD. Ad- 

itionally, DDG-MTSCCA independently identified PD-related loci, 

.g., rs1051613 ( TMEM175 ), rs12640416 ( GPRIN3 ), rs4110325 (in- 

ergenic), and rs17483653 ( RNU1–138P ). Table 7 lists the top five 

odality-specific SNPs of each imaging modality of our method. 

ome SNPs have not been currently reported, but they might pro- 

ide a novel clue, and further investigation should be warranted 

or this. Obviously, our method could identify more PD-related loci 

nd produce much cleaner weight patterns than the benchmarks, 

llustrating the advantage of using the diagnosis status and param- 

ter decomposition in comprehensive feature selection ability. 

The heat maps of imaging QTs for each method are shown in 

ig. 8 . Compared with the baseline methods, we obtained a cleaner 

eature selection model, and those QTs with non-zero coefficients 

ave been shown to be associated with the progression of PD. 

imilarly, the top five QTs of each modality detected by the DDG- 
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Table 6 

CCCs (mean ± std) estimated between SNPs and imaging QTs of three modalities from PPMI data set. 

SNP-FA SNP-MD SNP-VBM Average 

Training SCCA 0.79 ±0.07 0.67 ±0.11 0.71 ±0.08 0.72 ±0.09 

mSCCA 0.21 ±0.10 0.23 ±0.09 0.35 ±0.07 0.26 ±0.09 

MTSCCA 0.52 ±0.06 0.48 ±0.06 0.47 ±0.06 0.49 ±0.06 

DDG-MTSCCA 0.45 ±0.06 0.40 ±0.06 0.35 ±0.10 0.40 ±0.07 

Testing SCCA 0.20 ±0.13 0.14 ±0.11 0.18 ±0.13 0.17 ±0.12 

mSCCA 0.18 ±0.12 0.17 ±0.14 0.20 ±0.14 0.18 ±0.13 

MTSCCA 0.23 ±0.14 0.17 ±0.14 0.21 ±0.16 0.20 ±0.15 

DDG-MTSCCA 0.34 ±0.15 0.27 ±0.13 0.22 ±0.12 0.28 ±0.13 

Fig. 8. The visualization of identified imaging QTs in each imaging modality, i.e. (a) FA, (b) MD and (c) VBM for each method. From top to bottom: SCCA, mSCCA, MTSCCA, 

and DDG-MTSCCA. 

Table 7 

Top five imaging modality-specific SNPs selected by Canonical weights of each 

imaging modality of DDG-MTSCCA. 

FA MD VBM 

rs4677722 rs10030417 rs7639719 

rs9999619 rs324690 rs4110325 

rs308435 rs324727 rs1051613 

rs11945928 rs6818271 rs10026084 

rs34048166 rs11098654 rs7439876 
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TSCCA method are mapped to the brain, and their distribution is 

hown in Fig. 9 . The alteration of left corticospinal tract has been 

eported in both FA and MD, a region of damage that has an im- 

ortant impact on motor disorders in PD patients [38] . The struc- 

ural changes of the corpus callosum (MD) and cerebellum (FA and 

D) seem to be mainly related to movement dysfunction and im- 

ulse control disorders. In addition, the cognitive status of PD pa- 

ients is mainly related to the right cingulate gyrus (FA) injury [39] . 

he right superior temporal gyrus (VBM), the right superior frontal 

VBM),and the left olfactory cortex (VBM) are hypothesized to play 
10 
n important role in cognition, emotion, olfaction, and autonomic 

unctions [40] . These results also demonstrated the meaning of our 

roposed method which introduced parameter decomposition, net- 

ork constraint and diagnosis information. 

.4. Ablation experiments 

Compared to MTSCCA, three components including the 

iagnosis-guide regression component, the parameter decom- 

osition component, and the GGL-penalty network constraint were 

dded to derive the DDG-MTSCCA. To further illustrate the effect 

f each additional item, we performed the ablation experiments. 

pecifically, we alternatively remove each component to generate 

hree new models, namely noDG (no diagnosis information), noPD 

no parameter decomposition) and noGGL (no GGL-penalty). The 

DNI data set was used for comparison with the same experimen- 

al setup for each method. The training and testing results of CCCs 

f 80 trails per model are shown in Table 8 . 

It can be observed that DDG-MTSCCA achieves the highest 

raining CCCs on both SNP-AV45 and SNP-FDG tasks, and the best 

esting CCCs only on the task SNP-AV45. On the remaining tasks, 
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Fig. 9. Top five important brain regions (listed in descending order of the canonical weight on the right side of the picture) and overall distribution from the FA (first row), 

MD (second row), and sMRI imaging data of PD (last row). 

Fig. 10. Visualization of the canonical weights of SNPs (a) and imaging QTs (b) for the ablation experiments in terms of each task (i.e., AV45, FDG, VBM). From top to bottom: 

noPD, noGGL, noDG and the proposed DDG-MTSCCA. 

Table 8 

CCCs (mean ± std) of Ablation experiments. 

SNP-AV45 SNP-FDG SNP-VBM Average 

Training noPD 0.46 ±0.01 0.28 ±0.03 0.28 ±0.02 0.34 ±0.02 

noGGL 0.43 ±0.02 0.32 ±0.02 0.23 ±0.02 0.33 ±0.02 

noDG 0.46 ±0.01 0.32 ±0.01 0.24 ±0.02 0.34 ±0.02 

DDG-MTSCCA 0.46 ±0.01 0.32 ±0.02 0.21 ±0.02 0.33 ±0.02 

Testing noPD 0.47 ±0.05 0.24 ±0.07 0.12 ±0.07 0.28 ±0.06 

noGGL 0.44 ±0.05 0.32 ±0.06 0.22 ±0.07 0.33 ±0.06 

noDG 0.47 ±0.05 0.31 ±0.06 0.12 ±0.07 0.30 ±0.06 

DDG-MTSCCA 0.47 ±0.05 0.31 ±0.06 0.19 ±0.07 0.32 ±0.06 

11
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[

DG-MTSCCA did not obtain the best score, implying that the pre- 

iction performance of our method has a bit decrease due to ad- 

itional constraints. Nonetheless, our method still achieved rela- 

ively high scores across all tasks, and the average results among 

he three tasks were also similar to the top values. 

To further explore the impact of each component, the feature 

election results were further compared in Fig. 10 . It is clear that 

he noPD model cannot distinguish between modality-consistent 

nd modality-specific SNPs since the lack of parameter decompo- 

ition of the canonical weight U , thus only identifies one single 

eature selection (the first row in Fig. 10 a). In our model, how- 

ver, the significance of this division (the sixth and seventh rows in 

ig. 10 a) has been demonstrated. Secondly, our method identified 

he left angular (in the red box of Fig. 10 b) region which has been

eported to be associated with AD [41] , whereas the noGGL model 

gnores this AD-related area. This may be because GGL-penalty re- 

ained a strong connection between this region and the left post 

ingulum, thus the corresponding weights tended to be consistent. 

hat’s more, we find that, compared with the noDG method, the 

T pattern identified by DDG-MTSCCCA is much cleaner. It sug- 

ests that the noDG method might identify some AD-irrelevant QTs 

Such as the left medial occipital (in the black box of Fig. 10 b),

emonstrating the necessity of introducing the diagnosis informa- 

ion into the model. In summary, all three components, including 

arameter decomposition, network connection and diagnosis sta- 

us, play a crucial and indispensable role in improving the perfor- 

ance of the synthetic DDG-MTSCCA model. 

. Discussion 

We have proposed the DDG-MTSCCA with joint consideration 

f diagnosis status, parameter decomposition and network connec- 

ion constraints to identify the multi-SNPs-multi-QTs relationship 

or neurodegenerative disorders. The above results demonstrated 

hat DDG-MTSCCA was better than comparison methods for the 

dentification of risk genetic factors and abnormal brain regions. 

ut there are still some limitations. First, more participants may be 

eeded to reduce the overfitting risk. In practice, due to strict data 

equirements such as the data acquisition cost, data quality and 

atient burden, we could not obtain sufficient samples and imag- 

ng modalities. In view of this, we need to design new model to 

andle multi-modal data with missing modalities for small sam- 

le size. Second, though several meaningful SNPs and QTs could 

e identified, it is difficult to clearly indicate the number of signif- 

cant features. Third, we only tested DDG-MTSCCA on a small set 

f SNPs due to the computational complexity of the GGL penalty. 

n the future research, more types of neuroimaging data (such as 

MRI, other PET), omics data (such as gene expression, transcrip- 

ome, and proteome data) and clinical data may be included, in 

ope of identifying more comprehensive risk biomarkers. Besides, 

he performance of the whole-genome could be more interesting, 

hich is also another future direction. 

. Conclusion 

To help identify risk genetic factors and imaging QTs for neu- 

odegenerative disorders, we proposed the DDG-MTSCCA method 

ith joint consideration of diagnosis status, parameter decompo- 

ition and network connection constraints The feasibility of the 

lgorithm was validated on both simulated and two independent 

eal neuroimaging genetic data sets of ADNI and PPMI. Compared 

o SCCA, mSCCA and MTSCCA methods, DDG-MTSCCA method 

howed superior performance to the other three CCA models in 

anonical correlation and identifying disease-related SNPs and QTs. 

In the proposed method, we added some key components 

n the basic MTSCCA model. Firstly, through the regression task, 
12 
he diagnostic data were introduced to assist in identifying the 

isease-related imaging indicators, which not only made the 

iomarkers more meaningful, but also made the correlation coeffi- 

ient between the detected images and the genetic markers higher. 

econdly, the parameter decomposition strategy was adopted to 

ecouple the consistent and specific information of multi-modal 

maging data. With the sparsity constraint of the decomposed 

anonical weights and an additional orthogonal constraint to en- 

ure their independence, more comprehensive SNPs could be iden- 

ified for both AD and PD data sets, providing more reference to 

nderstanding the genetic mechanism of brain diseases. What’s 

ore, the network property of brain regions was also considered 

n our model. The GGL-penalty tended to identify QT pairs with 

trong connections, the impact of which has been validated by the 

blation experiments. 

In summary, DDG-MTSCCA identified stronger associations and 

btained clearer feature selection patterns on simulated data sets 

nd real data sets of AD and PD, and the recognized features are 

ore biological significance, compared with competitive methods. 

hese promising results revealed that the proposed model could 

e a powerful tool in brain imaging genetics, which is worthy of 

n-depth study. 
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